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Abstract-Automation and quantification of diagnosis of tumor 
cell images have been studied for these three decades in the field 
of medical imaging technology. Many techniques of image 
processing were proposed to solve problems such as nucleus 
segmentation and classification. But these studies have mainly 
focused on epithelial tumors. Nonepithelial skin tumors such as 
dermatofibroma (DF) and dermatofibrosarcoma protuberans 
(DFSP) have not been enough studied.  DF is benign tumorous 
disease and DFSP is mid-grade malignant tumor. Recently, it is 
necessary that criterion of classification between DF and DFSP 
is quantitatively specified. In this paper a system for segmenting 
cell nuclei of DF and DFSP is proposed. Nuclei regions are 
objectively segmented and surrounded using edges of strength 
by the system. Segmentation of arbitrary shaped nuclear regions 
and weakly stained nuclear region is made. A dynamic 
thresholding method with combining Laplacian histogram with 
Ohtsu’s method is used for segmentation. Segmentation test was 
done using real tissue cell images of DF and DFSP to evaluate 
validity of this system. Shape characteristics such as grade of 
similarity to circle were also computed from the segmented 
regions to assure that some differences between DF and DFSP is 
expressed in its distribution. 
Keywords – Segmentation, skin tumor, cell nucleus, dynamic 
threshold, Laplacian histogram 

 
I. INTRODUCTION 

 
Automation and quantification of diagnosis of tumor cell 

image have been studied for these three decades in the field 
of medical imaging technology. Most of studies are 
development of diagnosis support system that solved problem 
of pathologist shortage. One of the studies is Pap semear 
screening systems for cervical cancer that have already 
released[1][2]. Many techniques of image processing were 
proposed to handle with problems such as nucleus 
segmentation and classification in development of these 
systems[3][4]. But these studies mainly focus on epithelial 
tumors, and there are few studies that focus on nonepithelial 
tumors. Dermatofibroma (DF) and deamatofibrosarcoma 
protuberance (DFSP) are nonepithelial skin tumors that need 
be distinguished. DF is a benign tumorous disease and DFSP 
is mid-grade malignant tumor. Recently, it was reported that 
probability of spectrum of DF was different form that of 
DFSP and criterion of classifying these two tumors is 
continually discussed[5]. An important criterion of tumor 
classification is morphological characteristics of tissue cell 
image. Although distribution of cell nucleus area and shape 
characteristics such as grade of circle are mainly used in the 
previous reports, there are some problems in terms of the 
amount of work and objectivity if nucleus segmentation is 
done manually or semiautomatically. There are a lot of 
ambiguous nuclei areas in tissue cell images of DF and DFSP. 
 Therefore the problem of objectivity is not ignorable. It is 
difficult to segment nuclei regions accurately, because there 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Division of original sarcoma image into 64 small regions 
that have the same areas. 

 
exists a lot of ambiguous nuclei as already stated. In this 
paper an automatic system to segment cell nuclei of DF and 
DFSP is proposed. Nuclei regions are objectively segmented 
and surrounded using strength of edges by the system. 
Segmentation of arbitrary shaped nuclear regions and weakly 
stained nuclear region is made. A dynamic thresholding 
method[6][7] with combining Laplacian histogram method[8] 
with Otsu’s thresholding method[9] is used for segmentation. 
 

II. METHODOLOGY 
 

Here we explain contour extraction method of cell nucleus 
of skin tumor. This method bases on Laplacian histogram and 
ohtsu’s thresholding method. We used digital images for this 
study, which were taken into computer by microscope camera 
with magnification of 40 and filmscanner. Those images have 
size of 800×500 pixels. Tumors in the image are dyed using 
Hematoxylin-Eosin (HE) staining method. Two images with 
400×400 pixels are taken from the original image and they 
are used as experimental samples. 20 images of 
dermatofibroma and 20 images of dermatofibrosarcoma are 
used in this study. 
Step 1: First, we transform the original mage with RGB 
bases into the image with YIQ bases, using the following 
equation. 
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In the above equation R, G, B means values of RGB bases in 
each pixel of image, respectively. Component Y is usually 
used for binarization in general image processing. But it was 
shown from our research that component R in RGB bases 
was more adequate for binarization of tumor images, since 
nuclei are dyed to violet by HE dyeing method. Component R 
is used for binarization in this study. 
Step 2: Single threshold is usually used for binarization of 
image. Since intensity is uneven in some parts of tumor 
image, single threshold reaches in inadequate result for the 
tumor image. Binarization is done under such a condition by 
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making threshold surface. We divide the image into 64 small 
regions with 50×50 pixels as shown in Fig.1 for making the 
threshold surface. 
Step 3: Absolute values of Laplacian are generally large near 
the edge of objects in gray scale image. Gray scale image 
means the image of R component in this study. Laplacian 
histogram is computed for each divided region of component 
R. Let ( )yxf ,  be digital image of tumor. Ordered pair ( )yx,  
means coordinates of reference pixel. Laplacian is computed 
using the following equation. 
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After absolute value of Laplacian is computed for each pixel 
of image data, 10% of all the pixels are selected in numerical 
order from the maximum value. 
Step 4: Next, threshold of binarization for each divided 
regions are obtained using Ohtsu’s method. When maximum 
gray scale level is L  , intensity range is { }LS ,,2,1 L= , pixel 
number with level i  is in  and number of all the pixels is 

LnnnN +++= L21 , intensity histogram is computed by the 
following equation. 
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When k  is threshold in this region, we separate the whole 
region of gray scale into two classes, one is { }kS ,,2,11 L=  
and another is { }LkS ,,12 L+= . Occurrence probability 

21 ,ωω  of each classis is computed by the following equation. 
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Mean intensity 21 , µµ  of each class is obtained by the next 
equation. 
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Mean intensity Tµ  of the whole class is computed by the 
next equation. 

∑
=

=
L

i
iT ip

1

µ                                                                      (4) 

Valiance 21 ,σσ  of each class is computed by the following 
equation. 
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Criterion η  is used for obtaining the optimal threshold k . 
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Tσ  in the above equation means valiance of the whole class 
and Bσ  means valiance between each class. 
Step 5: Here threshold surface is made as shown in Fig.2 
using threshold of each small region obtained in step 4. 
Coordinate in parameter plane ( )ts,  is assumed in the 
following equation. 

( )tsxx ,= , ( )tsyy ,= , ( )tszz ,=                                     (8) 
These coordinates are also expressed by B-spline function 

( )xB nm,  as below. 
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Threshold surface is obtained by making a set of equations 
from thresholds of each divided regions and by solving 

ijα , ijβ , ijγ  in the above equation. 
Step 6: Binarization is done to each pixel by using threshold 
surface obtained in step 5.  

 
Fig.2 Threshold plane obtained by B-spline function 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Tracking the contour points  

t curve 

s curve 

Proceedings – 23rd Annual Conference – IEEE/EMBS Oct.25-28,  2001,  Istanbul,  TURKEY 

 



      3 of 4 

 

 
Fig.4 Grade of needle 

 
Step 7: Three processes are done as postprocessing. First 
processing is to eliminate the nuclei regions on the edge of 
image. Second processing is to eliminate intranuclear space, 
which is background region within the nuclei region. Final 
processing is to expand and constrict the obtained nuclei 
regions for smoothing the edges of nuclei. 
Step 8: Many shapes of nuclei are obtained in an image after 
binarization. Since we must obtain feature of each nucleus, 
labeling is done for each nucleus region. Different numbers 
are labeled nuclei in image in labeling process. After labeling 
process each shape of nuclei can be processed in order. 
Step 9: Contour tracking is made as shown in Fig.3. Starting 
point of tracking is scanned from the left upper of digital 
image to the right lower. After starting point is found, contour 
points are found out by searching clockwise on 8 
neighborhoods. Tracking the contour will be finished when 
noticed point returns to starting point. 
Step 10: Area, perimeter, grade of circle and grade of needle 
are selected as features of nuclei. Grade of circle (C) is 
obtained by the next equation, when L  is perimeter and A  is 
area of nucleus. 

2/4 LAC π=                                                                    (12) 
Grade of needle (SF)[10] is computed by the following 
equation.  

DTHBR
LNGMX

SF
'

=                                                              (13) 

MX LNG and BR’DTH in (13) are shown in Fig.4. 
We can know of polymorphism and atypism of nulei from 
those features of contours. 
 

III. RESULTS 
 
20 dermatofibroma and 20 dermatofibrosarcoma with 

magnification of 40 were used for this research. An example 
of contour extraction for dermatofibroma is shown in Fig.5 
and that of dermatofibrosarcoma is shown in Fig.6. 
Histograms of areas of nuclei were obtained from results of 
contour extraction as shown in Fig.7 and Fig.8. Fig.7 shows 
histogram of dermatofibroma and Fig.8 shows that of 
dermatofibrosarcoma. Frequency distributions have similar 
shapes each other, but cumulative frequencies are completely 
different. This result is the reason that average number of 
nuclei per one image for dermatofibrosarcoma is much more 
than that for dermatofibroma. Histograms of grade of circle 
and grade of needle are shown in Fig.9 and Fig.10. These 
figures show histograms of dermatofibroma. Also in the case 

  
 

 
Fig.5 Contour extraction of dermatofibroma 

 
 

 
Fig.6 Contour extraction of dermatofibrosarcoma 
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Fig.7 Histogram of area of nuclei (dermatofibroma) 
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Fig.8 Histogram of area of nuclei (dermatofibrosarcoma) 
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Fig.9 Histogram of grade of circle (dermatofibroma) 
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Fig.10 Histogram of grade of needle (dermatofibroma) 

 
of grade of circle and grade of needle, frequency distributions 
have similar shapes and cumulative frequencies are 
completely different. Although we have not computed the 
average and variance and other statistics yet because of 
shortage of image data, it seems that difference between 
dermatofibroma and dermatofibrosarcoma appears in the 
obtained results. 
 

IV. DISCUSSION 
 

Contour extraction by the proposed method is good enough 
to obtain shapes of nuclei of tumors. When nuclei have 
indistinct edge, the nuclei are ignored from contour extraction. 
Even if nuclei have indistinct edge, when there is obvious 
region within nuclei, the edge of obvious region is obtained. 
The matter that is dyed to violet in nucleus by HE dyeing 
method is called chromatin. The proposed method is 
objective from the viewpoint of distribution of chromatin. 
Nuclei with less chromatin have weak and indistinct edge.  

When more than two nuclei superimpose each other, since 
the proposed method regard the connected region as one 
nucleus, one large contour is obtained. 

Area, grade of circle and grade of needle are used as index 
of nuclei shape. Although the significance between malignant 
tumor and benign tumor appeared in obtained results, it is not 
enough for doctors to diagnose dermatofibroma and 
dermatofibrosarcoma with this system. We must expand this 
method to that with high accuracy from diagnostic viewpoints.  
 

V. CONCLUSION 
 

This paper proposed system with quantitative criterion for 
classification between DF and DFSP. First, after discussion 

about previous diagnosis of uterine cell, we made a system 
that consists of segmentation of divided image, extraction of 
nuclei region by combining Lapracian histogram with 
Ohtsu’s method. Next, experiment of extraction was done by 
the system when cytohistological image of DF and DFSP 
were used as reference samples. It was confirmed that the 
proposed system could extract regions of arbitrary shape with 
obvious edge. The whole shapes were extracted for nuclei 
with distinct edge and only part of chromatin concentrated 
regions were extracted for nuclei with blurred edge. Shape 
characteristics such as grade of similarity to circle were also 
computed from the segmented regions to confirm some 
differences between DF and DFSP. Segmentation test was 
done using real tissue cell images of DF and DFSP. 
Distribution of shapes characteristics such as area and grade 
of similarity to circle for DF and DFSP showed validity of 
quantitative criteria of the system from the results of 
segmentation test. The proposed method is adequate for 
medical study and diagnosis support of pathologists.  
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